

太阳能草坪灯控制器

特性

- 高效率:85%(典型值),可充分 利用太阳能电池
- ❖ 外围器件少: 仅需一个电感
- ❖ 输入电流可通过调电感量调整

应用范围

- ❖ 太阳能草坪灯
- ❖ LED 驱功
- ❖ 景观装饰灯串
- ❖ 室内装饰灯串

描述

YX8050 是一款高性能的太阳能草坪灯升压控制芯片,适用于一节 1.2V 电池供电的太阳能草坪灯。

主要功能有充电控制、升压驱动、光控等。

太阳能草坪灯主要利用太阳能电池的能源来进行工作,当白天太阳光照射在太阳能电池上,把光能转变成电能存贮在蓄电池中,再由蓄电池在晚间为草坪灯的LED(发光二极管)提供电源。具有安全、节能、方便、环保等优点。

输入电流可以通过调整电感来调节.

YX8050采用TO94封装以及最少1个外围器件,可有效减小电路PCB布板空间。

YX8050可工作于-40°C到+85°C。

应用原理图

a) 单色LED应用电路图

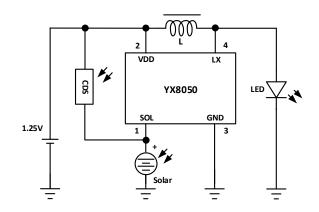


图 1. 光敏电阻控制使能

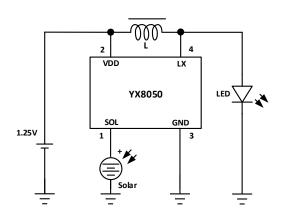
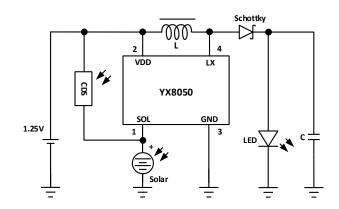



图 2. 太阳能电池控制使能

b) 七彩LED应用电路图

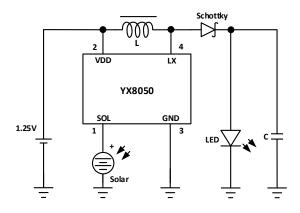


图 3. 光敏电阻控制使能

图 4. 太阳能电池控制使能

c)开关的接法

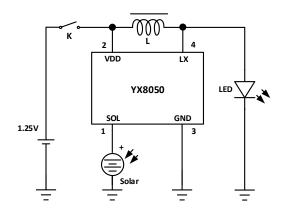


图 5. 推荐接法 1

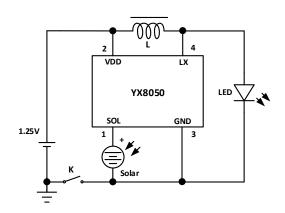


图 6. 推荐接法 2

订购信息

订购信息

器件型号	订购号	封装描述	存储温度	封装标记	包装选择	备注
YX8050	YX8050	TO-94	-65℃ to +125℃		Bag	

引脚信息

表 1. 引脚描述

引脚	名称	引脚功能描述	TO-94
1	SOL	接太阳能电池正端,使能及充电控制端	YX8050
2	VDD	电源端	
3	GND	地	
4	LX	功率开关漏极	1 2 3 4

绝对最大额定范围

描述	范围	单位	
电源电压	-0.3 ~ 3	V	
其它引脚	-0.3 ~ 3	V	
最大功耗	0.5	W	
存储温度范围	-65 ~ +125	°C	
结温	150	°C	
焊接温度	260 (10s)	°C	
静态放电(ESD)	HBM (Human Body Mode)	2000	V
財心以出(ころロ)	MM (Machine Mode)	200	V

热损耗信息

描述	范围	单位	
封装热阻 (θμΑ)	TO-94	150	°C/W
功耗, Pd@Ta=25°C	TO-94	0.6	W

推荐工作条件

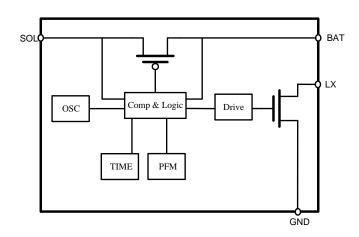
描述	范围	单位
工作结温	-40 ~ 125	ů
工作环境温度	-40 ~ 85	°C
电源电压	+0.9 ~ +1.5	V
连续输入电流	3~40	mA

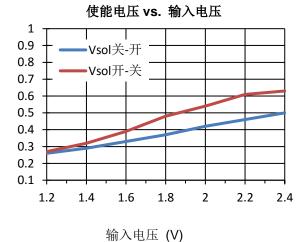
电特性

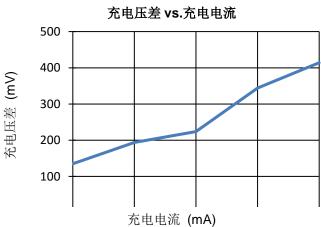
(V_{IN} =1.2V, T_A = 25°C, 除非特别说明。)

参数	符号测试条件		最小值	典型值	最大值	单位	
电源输入							
输入电压范围	VIN	I _{IN} =40mA	I _{IN} =40mA 0.9		2.7	V	
输入电流范围	I _{IN}	V _{IN} =1.2V,L=10μH	3		40	mA	
关断状态电流	I _{SD}	V _{IN} =1.2V, V _{CE} =0.4V		23		μΑ	
功率开关	•						
开关导通电阻	Rds(ON)	V _{IN} =1.2V,I _{IN} =40mA L=10µH				Ω	
输出漏电流	I _{LEAKAGE}	V _{SOL} =2.4V		6		μA	
太阳能控制							
使能输入阈值	V _{开-关}	V _{IN} =1.2V		0.27		mV	
文 化 棚 八 阕 恒	V _{关-开}	V IN= 1.2 V		0.26		mV	
充电最小压差	V _{CH∆min}	V _{IN} =1.2V,I _{SOL} =1mA		129		mV	
充电能力	Існ	V _{IN} =1.2V, V _{SOL-VDD} =300mV		68.5		mA	
使能输入电阻	R _{SOL-GND}	-		33		ΚΩ	
工作频率							
工作频率	flx	V _{IN} =1.2V,L=82μΗ		704		KHz	
工作效率							
工作效率	η			83		%	

功能框图





图 3 内部逻辑框图


使能电压 (V)

典型特性曲线

V_{IN} = 1.2V, L=47µH(0307), 负载1个白光LED, T_A = 25°C, 除非特殊说明。

工作原理

YX8050是一款太阳能草坪灯LED驱动控制芯片,其输入电流范围为3mA到 20mA。YX8050适用于1节可充电电池供电的太阳能草坪灯,通过不同的电路连接方式和电感配合,YX8050可实现不同输入电流的控制。

电流调节参考

YX8050通过改变外围电感值改变输入电流的大小。下表列出了图4接法,驱动一颗白光LED时,电感与电流的关系:

表1. 1.2V电池供电输出整流

仅供参考, 以实测为准

电感	规格	LED 负载	输入电流(mA)	输出电流(mA)
10uH			36.8	11.21
22uH			20.7	6.67
33uH	0207	1 个白光 LED	13.6	4.24
47uH	0307		9.4	3.33
56uH			7.7	2.73
68uH			6.4	2.42

充放电与使能控制

SOL引脚外接太阳能电池板正极,BAT引脚接可充电电池正极,白天太阳能电池将阳光转化为电能,为电池充电,夜晚电池放电驱动LED。

内部高精度比较器监测SOL与BAT引脚电压,当SOL电压高于BAT电压30%时,芯片进入关机状态,关闭LED,当SOL电压低于BAT电压22%时,芯片恢复正常工作,开启LED,从而实现光控功能,白天自动关闭LED,夜晚自动开启LED。此功能不影响SOL对BAT充电功能。

功耗考虑

芯片结温依赖于环境温度、PCB布局、负载和封装类型等多种因素。功耗与芯片结温可根据以下公式计算:

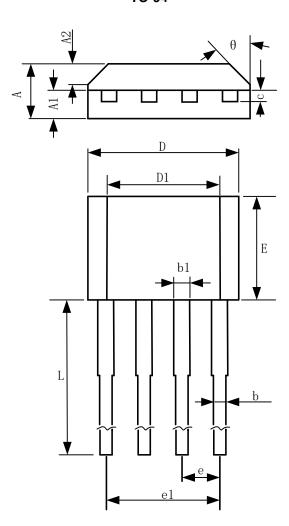
PD=RDS(ON)xIOUT²

根据PD结温可由以下公式求得:

 $T_J=P_D\times\theta_{JA}+T_A$

其中

T」是芯片结温


Ta是环境温度

θ」A是封装热阻

封装尺寸图

TO-94

TO-94 package mechanical data

IO-94 package mechanical data						
	dimensions					
symbol	millimeters		inches			
	min	max	min	max		
Α	1.520	1.720	0.059	0.067		
A1	0.700	0.900	0.028	0.035		
A2	0.500	0.700	0.020	0.028		
b	0.360	0.500	0.014	0.020		
b1	0.380	0.550	0.015	0.022		
С	0.360	0.510	0.014	0.020		
D	4.980	5.280	0.196	0.208		
D1	3.780	4.080	0.149	0.161		
E	3.450	3.750	0.136	0.148		
е	1.270 TYP		0.050	TYP		
e1	3.710	3.910	0.146	0.154		
L	14.900	15.300	0.587	0.602		
θ	45 ° TYP		45 °	TYP		